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structure lends itself more readily to practical implementation

than do the tandem structures proposed by Wang et al. [6].

Preliminary design data are presented for a YIG-As2S3–

LiNbOs structure. Finally, we note that it might be more

practical to provide a magnetic film rather than a magnetic

substrate [3]. Studies of such a layered structure are under-

way, and we believe that this, too, could lead to a useful non-

reciprocal isolator device.
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Periodic Structures and Their Application in

lnte~rated Optics

WILLIAM S. C. CHANG, SENIOR MEMBER, IEEE

Invited Paper

Ab.stracf-Periodic structures are used widely in integrated
optics for input-output couplers, bandstop filters, modulators, direc-
tional couplers, and distributed feedback lasers. An analytical dis-
cussion and review of these devices is given based upon the coupled-
mode transmission-line analysis. Experimental results and per-
formance characteristics are presented to illustrate the special fea-
tures of each type of device. Finally, the usefulness of transmission-
line analysis to the understanding and the design of these devices
is pointed out.

I. INTRODUCTION

I

NTEGRATED optics is an ambitious attempt to apply

thin-film and integrated electronics technology to optical

circuits and devices [1 ]– [8 ]. One of its goals is to achieve

sophisticated thin-film and fiber optical communication and

data processing systems. We may envision that such systems

will eventually be comparable to present microwave systems,

complete with thin-film sources, detectors, waveguides, filters,

directional couplers, modulators, etc. [7], [8]. Naturally,

there is a great deal of similarity between microwave and in-

tegrated optical components. However, because of the shorter
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optical wavelength, many microwave techniques utilizing the

matching of the transverse field variations for the fabrication

of devices such as E–H tuners, magic T’s, etc., are not ap-

plicable. Instead, techniques using periodic structures play a

dominant role in integrated optical device fabrication. There

are two major advantages in the use of periodic structures:

a) although the individual interactions from each element in

the periodic structure are small, their phase synchronized

cumulative effects can be very large; and b) small amounts

of random defects created in the fabrication process will not

affect the characteristics of the device significantly. Applica-

tions of periodic structures in integrated optics have already

led to the achie~,ement of a number of devices such as the

input–output grating coupler [9]– [12], the bandstop filter

[13], distributed feedback lasers [14]- [16], modulator,- [17]-

[22], and directional couplers [23].

Despite the fact that both the properties and the fabrica-

tion techniques of different devices using periodic structures

vary a great deal, there is a considerable amount of similarity

in their analyses. It is informative to re~-iew the properties of

the various applications of periodic structures in integrated

optics, one by one, from a unified coupled-mode transmission-

line analysis point of view. Design data, experimentally

measured properties, and performance characteristics will

then be discussed to point out the special features of each
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device. In order to present the comments in depth within a

limited space, we shall limit our discussions here to one-di-

mensional periodic structures and shall exclude any discussion

of optical nonlinear interactions.

II. APERTURBATION COUPLED-MODE ANALYSIS

Consider thevarious structures shown in Fig. I. All these

structures have periodic variations of the dielectric constant

in some regions of physical space. Within these regions, the

periodic variation of the dielectric constant can be represented

by

Ac(x, z) = ~ DPexp (–j21rPcos @x/L
F—cc

–j2rflsin @z/L) (1)

where p is designated here as the order of diffraction of the

periodic structure. If either the amplitude of the periodic

variation is small or the region within which the periodic

structure exists (i.e., @ is small, we can view the periodic

structure shown onthe right of Fig. 1 asa perturbation of the

uniform thin-film waveguide shown on the left of Fig. 1.

The Maxwell’s equations for the entire structure with

t3/r3y = O and with e’at time variation can be reduced to the

following well-known inhomogeneous wave equation [24],

[25].

a) FOY TE Modes:

— 24(x – t – 6)].[ZL(Z) – U(Z – l)]EV (2a)

where Hti = Ez = E, =0

b) For Tibf .Modes:

(2b)

— U(* – t – 5)].[24(2) – z4(z – l)]HV (3a)

where EU = H. = Hz = O

The term on the right-hand side of (2) and (3) is regarded

here as the perturbation term; k = 27r/k is the free-space

propagation wavenumber of plane waves; c(x) is the relative

dielectric constant shown in Fig. 1; u is the usual unit step

function: and 1 is the total length of the periodic structure.

In principle, the properties of any device using a periodic

structure will be given by solutions of (2) and (3).

Solutions for the unperturbed structure (i.e., either 6 = O

orAe =0) are well known [24]–[26]. They are the orthonormal

set of TE and TM air modes, substrate modes, and guided

wave modes. Using the notations given in [26] we shall desig-

nate any continuous mode (including both air and substrate

mode) as

-+:(’”)
[a)

1 1
-+ z

e (X)=’2 E=E2

(C.I

x

.(X)=l A .,

E ~x)=cl~
~ti=:-%--%-~-:-<”: ==:+,c (X, Z)—— —

6 — — 1— -.—
—=: —== .= —=

—
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(d)

Fig. 1. Illustration of various periodic structures in integrated optics
(@is the angle of inclination of the grating fringes,@= 90° for gratings
with vertical fringes). (a) Etched grating. (b) Deposited grating.
(c) Volume grating in the evanescent field region. (d) Volume grating
in the guiding layer.

Eu = E(x, f3)e-@ze@~

The guided wave (i.e., discrete)

H,, = H.(x) e–~~nzej”t

for TE modes (4a)

for TM modes, (4b)

modes shall be designated as

for TE modes (5a)

for TM modes. (5b)

Both the air and the substrate modes are modes of the radia-

tion field.

If there is an incident wave in the form of one (or a combi-

nation) of these modes with a z variation e–~eoz, each indi-

vidual element of the periodic structure will scatter some of

its energy into other modes. In other words, the scattered

field, due to the perturbation of a single element, can be repre-

sented as a superposition of the continuous and discrete modes

of the unperturbed structure. If we superimpose (i. e., sum)

the contributions to a given mode from all the elements, we

see that the total amplitude for any mode will, in general, tend

to be very small because of the cancellations in phases of the

individual contributions. For a few special modes when their
phase variation, e–j& (or ~–jflrn%), is equal to ~–i&o. times

e–(iZTP sM zIL), the individual contributions will add (i. e., be

synchronized in phase). In these special cases, we recognize

that significant transfer of power between the incident and

the scattered mode can take place via the phase-synchronized

~th-order diffraction of the periodic structure. Mathemati-
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Fig. 2. Illustrations of collinear phase matchings. (a) Grating output coupler. (b) Grating input coupler (forward excitation by air modes).
(c) Grating input coupler (backward excitation by air modes). (d) Grating input coupler (backward excitation by substrate modes). (e) Forward
mode conversion. (f) Backward mode conversion.

tally, the condition for phase matching is usually written as

b = @o+ 27r9 sin @/L for continuous modes (6a)

t% = PO+ 2~P sin 4/L for discrete modes. (6b)

Obviously, there may be more than one mode that satisfies

the phase-matching condition, Fig, 2 illustrates different

situations in which colinearly propagating modes” may be

phase matched for various kinds of grating periodicity.

In terms of (2) and (3), we see that the modes are solu-

tions of the unperturbed homogeneous wave equations with

Ae = O. When AE # O and when there is an incident wave (con-

sisting of one or more modes), all those modes that are not

ph’ase matched by (6) to the incident mode (or modes) can be

neglected. The phase-matched modes are governed by the

inhomogeneous (2) and (3), where the source term is simply

At times the incident mode. It is well known in microwaves

that such an inhomogeneous equation can be considered sim-

ply as an inhomogeneous transmission line excited by a known

source distribution. There are various microwave techniques

for solving such an equation [27 ]– [29 ]. However, in optics it

is worthwhile to emphasize that there is a difference between

the transmission-line equivalent circuits for the discrete and

the continuous (i.e., radiation) modes. For continuous modes,

any scattered radiation field excited by the grating will be

outgoing waves and will not reinteract with the grating once

more to excite other modes. These solutions of the inhomo-

geneous equations always behave like a simple matched

transmission line in the f x-directions excited by a known

source confined within a small region of x. Any discrete mode

is evanescent in the x-direction and will continuously be

coupled to other modes through the periodic structure as it

propagates along the z-direction. It is best described as a

transmission line in the z-direction. When several modes are

phase matched to each other, then they may be represented

by transmission lines coupled to each other by the grating

perturbation. These differences in transmission-line solutions

are responsible for the different properties of the various de-

vices described in the following sections.

II 1. THE GRATING INPUT–OUTPUT COUPLER

A plane wave incident on an unperturbed thin-film wave-

guide will usually be accompanied by a reflected and a trans-

mitted plane wave. A grating etched (or deposited) on the

waveguide shown in Fig. 1 (a)–(c) will diffract any discrete

guided wave into outgoing radiation plane waves. This assort-

ment of incident, reflected, and transmitted plane waves at a

given angle of incidence O (or any single diffracted outgoing

plane wave at angle 19) is either a substrate mode or a, linear

combination of the degenerate even and odd air modes at the

same (3 value with /3= ~~(x) k sin O or (?= ~~(x) k sin (7–O)

[26]. Each mode (or a combination of degenerate modes) can

be regarded as a transmission line.
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Fig. 3. Diffracted beams in a grating coupler. (a) Grating input coupler (excitation from the air). (b) Grating output coupler.

Consider now that there is a grating with an incident or

diffracted plane wave at angle %O.& and the grating period-

icity, L, satisfy the phase-matching condition

B~=@O+2Tsin4/L (7)

where flo=k sin 00 for plane waves in the air and &=nzk

sin (T —Oo) for plane waves in the substrate. The grating will

convert part of the energyof the incident plane wave into the

nzth guided wave. Or, conversely, the grating will convert the

energy of anincidentmth guided wave mode into various dif-

fracted plane waves at80 and at6fiJ. In the former situation,

thegrating acts asan input coupler. Inthelatter case it is an

output coupler. Naturally, there are other diffracted plane

waves atangles very close toeachd(’j. They will be less intense

than theplanewaveatdf’) because thephase-matching condi-

tionis only partially satisfied. Therefore, in reality, each dif-

fracted beam consists of a bundle of plane waves centered

around each O[’). Similarly, the grating input coupler also will

convert the energy of the incident plane wave into the mth

guided wave, even if Oisslightly different from OO. Theexcita-

tion efficiency will naturally be reduced when O#flo. The

angular range of either the diffracted beam or the incident

excitation angle is called the beamwidth of either the diffrac-

tion or the excitation. Fig. 3 illustrates an input and an output

grating coupler, the incident beam at~o, the output beam at

O., and the various higher orders of the diffracted beams
at o(t)

It is informative to examine first the grating output cou-

pler from the transmission-line point of view. Let V~ be the

complex amplitude of the mth incident guided wave mode

propagating in the +z-direction. The amplitude, V, of each

of the phase-matched diffracted plane waves centered at O(;)

(or at m –O(;j) is proportional to l’%. Both the V’s and the

energy carried in each diffracted beam can be determined

directly from the transmission-line analysis. Since the energy

of the diffracted beams was extracted from the mth mode, Vm

must decrease as the mode propagates along the grating.

Thus we have [24]

avm

[i 1— - ~am, v.
13z =

._
am Vm (8a)

++c:(i)l’
1}

. (8b)
Pi

Analytical expressions for C., C., and C.’ for TE~ modes in an

etched coupler are given in (31) of [26]. Similar expressions

can also be obtained for TM modes and for other structures.

Each C. term represents the diffraction loss in the form of a

phase-matched outgoing radiation beam in the air with f?

values of the plane waves centered about ~(i) where ~(’) =&

– (27ri sin @/L) and O <~f’) <k. Each C. term represents the

diffraction loss in the form of an outgoing radiation beam in

the substrate having the same value of ~~’) as the correspond-

ing C. term. Finally, each C,’ term represents diffraction loss
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with k<~ti)<fzlk (i.e., in the form of substrate modes without

any companion radiation beam in the air).

From (8) it is clear that for a long enough grating (1>>I/an)

all the energy of the incident guided wave will eventually be

diffracted out, Normally, only one of the outgoing beams at 00

is useful to us. Therefore, the maximum efficiency of an out-

put grating coupler for the beam at 00 in the air is

‘ / ~[: Iwl’+: lw)l’qout ‘— I CO12
Uo

1++\C,’(i)l’ . (9a)
Pi

Similarly, the maximum efficiency of an output coupler for

the beam at 00 in the substrate is

%ut=~I col’/ +- I ca(o\2+
Po u;

+~
Pi

Notice that qo.t S 1 in all cases.

For an input grating coupler, the

~ 1c,(i) 12
Pi

1I(C,’(i) 1’ . (9b)

mth mode receives

energy from the incident plane wave as it loses energy to the

diffracted beams. Thus (8) must be modified to account for

the added energy:

(3V.
—_ amVm + VAP

f3z
(10)

where AP is the amplitude of the electric field of the incident

plane wave at the phase-matched angle and v is the coupling

coefficient from the incident beam to the guided wave ob-

tained from the transmission-line analysis. Assuming that

either the grating grooves or the incident beam begins at

z=O (i.e., V~=O at z= O), we obtain from (10)

V~ = “ [1 – e-”~”]. (11)
am

The power carried by the normalized guided wave mode at a

given z position is Vn V~* while the power carried by the

incident plane wave over a distance z is [A PA P*/2]z cos

Oo/~pO/~On where n is the refractive index of the medium con-

taining the incident beam. Thus the efficiency of an input

coupler is

2(1 – g–%iz)
vi. = VO (12a)

ffmz

with

no = vv*/(ffm Cos eoV’n~o/Po) = V..t. (12b)

The maximum value of ~in is 0.81r70 when z = 1.25/a~.

From the preceding discussion it is clear that the highest

maximum output coupling efficiency is 1 and the highest

maximum input coupling efficiency for a plane wave incident

on a linear grating is 0.81. In order to achieve this value we

must: a) use a long grating length, 1, for the output coupler

(1 >>1/a~) and an appropriate length for the input coupler

(1= 1.25/a~), and b) effectively reduce the coupling into all

other unwanted beams (i. e., making I COI >> I Ca(i) I and
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Fig. 4. A grating input coupler on a glass waveguide (taken from [9]).
The incident beam (To), transmitted beam (7), reflected beam (R),
first-order diffracted beam in the air side (DJ, first-order diffracted
beam in the snbstrate side (D1’), and guided optical beam are shown.

I C,(i) I and I C,’(i)] for i#O). The absolute magnitude of the

coupling (e.g., the grating depth) controls only the length

of the coupler needed for efficient operation; it does not affect

the maximum efficiency.

If we define the beamwidth as the angular range, A9,

around 00 or Oti) within which the V of the diffracted plane

waves will be larger than l/<~ of the V value at 60 or Ofij,

then from the solutions of V [26] we obtain

sin (COS 0fi)klAO/2 sin @) 1

(COS 0(i)kiAO/2 sin 4) = ~~
(13a)

for diffracted beam (or excitation) from the air, and

for diffracted beam (or excitation) from the substrate. Note

that long and shallow grating couplers yield narrow beam-

width.

Experimentally, Dakss et al. have demonstrated a de-

posited grating coupler shown in Fig. 4 for a glass waveguide

at an efficiency of 40 percent [9]. Kogelnik and Sos:nowsky

have used a dichromatic gelatin holographic grating coupler

and achieved an efficiency of 70 percent [10]. Dalgoutte ob-

tained 70-percent efficiency using a backwardly excited de-

posited grating coupler [11 ]. Cheo used an etched grating on a

GaAs waveguide and obtained 10-percent efficiency at the

C02 laser wavelength [30]. Note the large variations in effi-

ciency values (i. e., variations in qo). These variations can be

accounted for by the differences in the C coefficients in each

case. Hence, analytical guidance [26], [31 ]–[33] is important

in order to achieve efficient grating coupling in a given wave-

guide. It is also interesting to point out that, experimentally,

a grating coupler can be evaluated most simply by using it as

an output coupler, thereby determining its qo.

There are several mechanisms available to us to make

?lOsl.

a) The modes of the laser (for input coupling only), the

polarization of the incident wave, the grating groove shape,

and the order of the grating [i. e., the Dp value in (1) II should

be chosen so that I COI is fairly large.

b) qO is one if the grating periodicity is chosen as shown in

Fig. 2(d) and in [11] such that phase matching is achieved

only for one substrate mode at the I PI = 1 order (i. e., only

one C,’ term exists).

c) If the refractive index of the film is high, then the C,

term is likely to be larger than the corresponding Cc term at
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Fig. 5. Illustrations of grating mode converters and deflectors. (a) Forward mode converter. (b) Backward mode converter.
(c) Reflector. (d) Bragg’s deflector.

thesame~ti). Hence, fairly large qovalue can reobtained with

~ values in the zero to k range [see Fig. 2(c)] using the I PI = 1

order and using air modes from the substrate side [26].

d) Other techniques may be used, such as usinga holo-

graphic grating orusing sinusoidal shaped grating grooves, to

make the C coefficients very small at those unwanted orders

of IPI >1. However, the holographic grating could also sup-

press the unwanted diffraction in either the substrate or the

air side. The sinusoidal grating grooves will still have both the

C. and the C, terms at the same value of (30.1

IV. PERIODIC MODE CONVERTERS AND DEFLECTORS

Gratings can also be used to synchronously couple two

propagating discrete modes. Consider the etched (or de-

posited) grating shown in Fig. l(a). Let K be a vector per-

pendicular to the grating grooves with a magnitude 2r/L.

& and ~. are vectors representing the propagation wave-

numbers along the directions of propagation of the nzth and

the nth mode. When the phase-matching condition f K= &

–&is satisfied, the grating will convert the energy effectively

from the nzth mode to the nth mode and vice versa. Thus the

grating is now a mode converter. If & and & are parallel to

each other as shown in Fig. 5(a), it is a forward mode con-

verter. If & and & are antiparalleled to each other as shown

in Fig. 5(b), it is a backward mode converter. When n = m in a

backward mode converter as shown in Fig. 5(c), it is a reflec-

1 Recently, Tamir has shown that for grating groove depth EAq ! 4,

m= 1, where &is the equivalent wavelength in the grating region and the
excitation is a plane wave from the air region. These deep gratings cannot
be analyzed by the perturbation methods.

tor. When & and Q. are along different directions as shown in
Fig. 5 (d), it is a Bragg’sdeflector. Mode converters can also

be used as directional couplers because the direction of propa-

gation of two modes can easily be made to be different in thin

films.

From the transmission-line point of view, the two trans-

mission lines representing the tith and the mth mode are now

coupled to each other via the first-order diffraction of the

grating. Simultaneously, each of these two modes are also

coupled to the continuous modes via higher order diffractions.

We can estimate the diffraction losses to their radiation modes

from (8). Compared to the grating input–output couplers,

the diffraction losses now are much smaller and may not

necessarily be the major contributor to the attenuation for

the waveguide modes.

Let us designate the total attenuation rate, due to both

diffraction and ordinary waveguide attenuation, as o~ and an.

Then from the transmission-line formalism [23 ] the relation

between the amplitudes of the wzth and nth mode, V~ and

V., is given by

(14a)

(14b)

Here the nzth mode is assumed to be propagating in the +z-

direction. The nth mode is propagating at a small angle ~ with

respect to the z axis. The upper sign in (14b) applies to

forward deflection (or forward mode conversion) and the
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from

lower sign applies to backward deflection (or backward mode

conversion). For structures with DI = D–I and for conversions

and deflections with small angles of deflections ~, the coupling

coefficient Kn~ is

kZD1 CCE t ‘ E (x) En(X) dx
Knm = K.n =

4wp s m . (15)
t—$

For illustration, let us first consider the case of backward

deflection and mode conversion where am= a.= a; the grating

length is 1; and V. =0 at z=l and Vm= 1 at z=O. In this case,

the solution of (14) is:

v. =

~ cosh 7(1 – z) + a sinh-y(l – z)
(16a)

-y cosh yl + a sinh -yl

v. =

–jKmn sinh ~(1 – z)
O<z<l (16b)

v cosh 71 + a sinh -yl ‘

I Vn(z = O)lz
q = efficiency of conversion =

I Vm(z = 0)]’

Kmn2

——

(-y coth -yJ + a)2
(16c)

where

v = ~amz + Kmnz.

In the case of forward deflection and mode conversion, with

~~=~~ and V~ =0 at z=O, we obtain

v~ = e-a~z cos (KtmO (17a)

V. = – je-”~Z sin (Kmnl) (17b)

V.(2 = z) ‘
~ = efficiency of conversion =

Vm(z = 1)

= tanz (KJ).

Equations (16) and (17) predict that a controlled amount

of energy can be deflected or converted out of the incident

mode by controlling the depth of grating grooves and the

length of interaction. Fig. 6 shows an experimentally fabri-

cated grating forward mode converter at k = 10.6 ~m in a

GaAs epitaxial waveguide [23]. Fig. 7 shows its calculated

conversion efficiency compared to the experimental results.

Note that in order to achieve high efficiency one must mini-

mize am and a.. The radiation loss may contribute signifi-

cantly to am and an if we are not careful in designing the

grating, For example, Fig, 8 shows the rapid increase of radia-

tion loss for two particular GaAs waveguides when the

grating grooves are deepened. The radiation loss in grating

mode converters can be minimized by using shallow grating

grooves, by using groove profiles to minimize DP VdUW for

P> 1, and by designing the waveguide so that radiation modes

are coupled to the discrete modes only at fairly high orders of

diffraction.

V. MODULATORS USING PERIODIC STRUCTURES

Etched gratings achieved periodic changes in refractive

index through their surface profile. One could also achieve

periodic changes in refractive index by the electrooptical

effect using a modulation voltage applied to a periodic elec-

trode pattern or by the acoustooptical effect using acoustic

waves at appropriate frequencies [17]–[21 ]. Since the

changes of refractive index can now be controlled by either

the applied modulation voltage or the amplitude of the

acoustic waves, this type of deflector or mode converter can

serve as an amplitude modulator or a switch. Experimental

demonstration of the electrooptical Bragg’s modulation and

deflection was reported by Gia Russo and Harris [18 I and by

Polky and Harris [17] at k =0.6328 ~m. In one case they used

the electrooptical material nitrobenzene as the waveguide ma-

terial and obtained amplitude modulation of 3 percent at 120

KHz using a l-cm-long electrode with 30 V applied across the

waveguide. In the second case, they used an interdigital

periodic pattern electrode on a nitrobenzene filled waveguide

and obtained 50-percent amplitude modulation at 8 KHz

with a 5-mm-long electrode when 200 V was applied across

the interdigital electrodes. Fig. 9 shows the modulator made

by Polky and Harris. Experimental demonstration of acoustic

mode conversion and Bragg’s deflection at A = 0.6328 ~m was

reported by Kuhn et al. in glass waveguides at 191- and

320-M Hz acoustic frequency at a modulation efficiency of 66

and 45 percent, respectively [19], [20]. Fig. 10 shows the

acoustooptical deflector made by Kuhn et al. Gfaller and

Pitt reported collinear acoustooptical deflection in a poly-

styrene waveguide on a glass substrate [21]. Experimental

demonstration of acoustic deflection and mode conversion at

X = 10.6pm in GaAs epitaxial waveguide was also reported by

Cheo [34]. Switching and modulation of light using periodic

magnetooptical effects in garnet waveguide were accom-

plished by Tien et al. [22].

From the transmission-line point of view, the coupled-
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mode equation for the modulator is similar to those of the

etched grating mode converter and deflector. Therefore, the

solutions for modulation efficiency are the same as those

given in (16) and (17) except that for electrooptical modula-

tors

where the modulation voltage V is applied across the wave-

guiding film of thickness t.n and r are the refractive index and

the electrooptical coefficient of the waveguiding film, respec-

tively, V is now a function of time.

In practice one would expect the A& coefficients for elec-

trooptical modulators to be smaller than the Kn. coefficients

for deep etched grating grooves because r is typically of the

order of 10–12 m/V. An advantage of small Km. k that the

contribution to the attenuation coefficient, CY~, by radiation

loss can usually be neglected. A disadvantage of small Kfi.

k that we need rather large values of Kmn to achieve efficient

modulation constrained by: a) the required modulation drive

power, and b) the available interaction length. This disad-

vantage is especially troublesome at long wavelengths such

as 10.6 pm [35]. Thus from the point of view of the required

RF power and voltage for a given depth and bandwidth of

modulation, mode conversion will be an inefficient modula-

tion (or switching) technique because of the small vaiues

achievable for ~~ EnEn dx. Bragg’s deflection or reflection

from the nzth mode to a backward propagating mth mode is

preferred. For a given modulator, (16), (17), and (18) allow

us to optimize the modulator design so that we can get maxi-

mum deflection efficiency with minimum modulation drive

power. For example, we may want to choose the thickness of

the waveguide so that we can get the largest depth of ampli-

tude modulation at a given applied voltage.

Similar conclusions can be drawn for acoustooptical mod-

ulators and switches. However, the acoustic waves will pro-

duce periodic ATZ due to both variations of the density in the

film and of the surface profile. The analysis will be more com-

plicated. In general, electrooptical modulators will give the

largest modulation bandwidth. Acoustooptical modulators

can be operated with small RF power. However, their band-

width is limited by the transit time of acoustic waves. Mag-

netooptical modulators are convenient to use but have moder-

ate bandwidths.

VI. PERIODIC BANDPASS FILTERS

When the frequency of the optical radiation is such that

the phase-matching condition is satisfied for backward wave

interactions, (16) predicts that all the energy in the tn.th mode
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will be reflected back for large 1. In terms of the terminology

used intraveling wave tubes, wesaythat this waveguide with

an etched grating is now a periodic structure operated in its

“stopband.” When the frequency of the optical radiation does

not satisfy the condition for backward interaction, the at-

tenuation of the nzth mode will be small. Therefore, periodic

gratings can be used as bandpass filters. The analysis and the

design of the bandpass filter are concerned with the width of

the stopband, the insertion loss in the passband, and the mag-

nitude of isolation in the stopband.

From the transmission-line point of view when two modes

in opposite directions of propagation (most commonly a back-

ward and a forward propagating TEo mode) do not satisfy the

phase-matching condition exactly, they are coupled to each

other through equations similar to (14) and (15):

(19a)

(19b)

-1+

‘-’m ‘“’sl’’’’(’O’)

Fig. 9. Illustration of the thin-film modulator system used by Polky

and Hax ris, [17 ]. Guided modes propagate in the thin film of nitro-
benzene while interdigital copper electrodes provide the modulating

field. Shaded areas indicate sodium fluoride material.
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Fig. 10. Illustration of the acoustoop;cal deflector

and modulator made in IBM [20].

and

(19C)

Here the mth mode is propagating in the +z-directiion, and

the nth mode is propagating in the —z-direction. am, cw, and

A’mn can be calculated according to (9), (15), and (18) and Sec-

tion IV. The frequency is allowed to vary. The exact phase-

matching condition corresponds to A(3 = O. In other words, A(3

is a measure of the deviation from the exact phase-matching

condition. Without imposing the boundary conditions in z at

this moment, we note that solutions of (19) must again be of

the general form

Vm = (Cle–~o’ + Cze+~o’)eJAfl’/2 (20a)

V. = ( Dle–yo’ + D2e+roz)e–jA@s/2 (20b)

where for simplicity we have assumed am= an = a. Substitution

of (20) into (19) yields:

‘“2=Kmn’+(a+’+72(21)
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Fig. 11. Plot of Im (-yo) versus A/3 ina periodically

perturbed waveguide [36].

Equation (21) is the well-known dispersion relation of

traveling wave structures. Kogelnik and Shank presented

this result for the special case of m=n in the coupled-wave

analysis of distributed feedback lasers [36]. For an ideal

waveguide with a=O, (21) indicates that -yO is real (in other

words the structure is in the stopband) whenever lA~l

<2]K~nl. Consequently, the stopband has a half-width of

2K~r,. When lA~l>12K~nl (a=O), yO is purely imaginary and

thestructure is in the passband. Fig. 11 shows the diagram of

theimaginary part of-yo/l K~nl versus A@/12K~.l when a=O.

Foragiven structure we can use (21) tocalculate thevari-

ations of the real part of y. as A(3is varied from the center to

the edge of stopband, thereby evaluating the isolation ob-

tainable within thestopband foragiven length of the filterl.

Similarly, inthe passband, the real part of~O determines the

insertion loss of the filter fora given Iengthl.

In the special case where n=nz, the coupled-mode trans-

mission-line analysis is, of course, just the perturbation anal-

ysis of the interaction of two space harmonics in the stopband.

Elachi and Yeh presented extensive analysis of such a periodic

structure from the space-harmonic point of view [37]. A de-

tailed discussion of the properties of periodic structures in the

stopband was given in their work. Dabby, Kestenbaum, and

Pack presented a formalism that included more than two

space harmonics [13 ]. The analysis presented here agrees with

these results in the region where the grating can be treated as

a perturbation. However, our method is also valid when the

filtering is provided by two different modes (i.e., m #n).

Dabby, Saifi, and Kestenbaum have actually constructed

such a filter [38]. The guides consisted of photoresist film with

surface corrugation on fused silica substrate at a periodicity of

0.36 pm and at a depth of 500 & At k = 1.064 pm they ob-

tained transition between complete cutoff and propagation by

variation in the periodicity of the guide by ~ 30 ~.

VII. DISTRIBUTED FEEDBACK RESONATORS AND LASERS

Bandpass filters used the phase-matched interactions

created by the periodic structure to reflect the incident mode.

Such reflections naturally will occur in both directions. If the

reflections that occur have the proper phase relationship so

that they provide positive feedback, we will have then a dis-

tributed feedback resonator. If the waveguide has gain (e.g.,

a material impregnated with an appropriate dye) such that

the gain exceeds the losses, we will have a distributed feed-

back laser.

A number of researchers have reported experimental dem-

onstration of distributed feedback lasers. Shank, Bjorkholm,

and Kogelnik obtained dye laser oscillation in which the feed-

back is achieved by pumping the dye with the fringes formed

by the interference of two second-harmonic beams of a single-

mode ruby laser [14]. Zory showed that laser oscillation can

be obtained on the guided modes of leaky planar film wave-

guides by using a dye to provide the gain and backward dif-

fraction from a spatially periodic modulation of the film

thickness to provide the feedback [15]. Nakamura et al. re-

ported laser oscillation in a GaAs thin-fd m waveguide pumped

by a ruby laser; the grating was obtained by ion milling of

photoresist patterns generated from the interference of two

laser beams [16].

Kogelnik and Shank [36] gave an analysis of the dis-

tributed feedback laser, which is equivalent to the solution

given in (20), subject to the boundary condition that V~(z =0)

=Vn(z=l)=O; i.e.,

V~ = (sinh ~oz)e~A~’/2 (22a)

Vn = [sinh TO(l – z) ]e–~A~zf2. (22b)

When there is enough gain and enough feedback to sustain

oscillation, solutions given in (22) must also be the self-sus-

taining solutions of (19). Substitution of these two solutions

into (19) yields the condition for the threshold of laser oscil-

lation,

A@
—a —j~ = yOcoth~& (23)

Note that for a waveguide with gain, a is now a negative quan-

tity. Each solution of (21) and (23) is an eigenvalue solution

of (19). Substitution of these eigenvalues of Y. into (22) yields

an eigenmode for the resonator. The a values needed to satisfy

(21) and (23) simultaneously are the threshold gain. For a

given length 1 and a given coupling coefficient Km. each eigen-

mode has its characteristic field pattern, its threshold gain,

and its characteristic resonance frequency. For example,

Fig. 12 illustrates the oscillation frequencies and the threshold

gain for a typical distributed feedback laser.

Much of the detailed properties of the solution of (23) are

given in [36] and [37], and they will not be repeated here.

We simply wish to point out here that, whenever there is only

one discrete mode involved, the difference between the results

given in [36] and the results obtained here is that we have

given a method to evaluate K~Z for both etched periodic struc-

tures or periodic structures created by electrooptical or

acoustooptical interactions. The coupling coefficient given by

Kogelnik and Shank is accurate only for thick films, For thin-

film waveguides their values of coupling coefficient will be too

large because they assumed Ac occurred in the entire environ-

ment including the waveguiding layers and all the evanescent

field regions. Other researchers, using the space-harmonics

method, have also obtained analyses of distributed feedback

lasers including effects of surface corrugations, acoustooptical

effects, etc. [37 ], [39]. Our method also allows us to evaluate
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required threshold gains for a distributed feedback [36].

thecxcaused by radiationless. Moreover, forwaveguides that

can support more than one discrete mode, the oscillation mode

pattern, the threshold condition, etc., will be given by solu-

tions of (23), including all the possible combinations of dis-

crete modes in backward diffraction. Recently, Bjorkholm,

Sosnowski, Shank, and Kogelnik have reported distributed

feedback lasers on anisotropic substrates [40], [41].

VIII. SUMNIARV

In retrospect, we see that the coupled-mode theory and

transmission-line analysis developed originally for microwave

circuits is very useful to integrated optics. The important

parameters for the design and understanding of periodic struc-

tures in integrated optics are the attenuation rate a, the cou-

pling factor V, and the coupling coefficient Kmn. Kmn is deter-

mined by the overlap integral fEmEn dx. By using the trans-

mission-line analysis we could adjust the design of the struc-

ture both to optimize the coupling to a given radiation beam

(or a given waveguide mode) and to minimize the other un-

wanted couplings. As a result, we could control the coupling

efficiency, the conversion efficiency, the width of the stopband,

etc. By the same kind of analysis, we could also assess laser

resonant frequency, oscillation threshold, oscillation mode

patterns in terms of the structure parameters such as wave-

guide thickness, refractive index, grating periodicity, grating

depth, cavity length, etc. Obviously, limitations in space pre-

vented us from giving a more detailed discussion of the char-

acteristics and design procedures for each device. The readers

are referred to the references listed at the end of this paper for

detailed information.
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