IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-21, NO. 12, DECEMBER 1973 775

structure lends itself more readily to practical implementation
than do the tandem structures proposed by Wang et al. [6].
Preliminary design data are presented for a YIG-As:Sy
LiNbOj; structure. Finally, we note that it might be more
practical to provide a magnetic film rather than a magnetic
substrate [3]. Studies of such a layered structure are under-
way, and we believe that this, too, could lead to a useful non-
reciprocal isolator device.
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Abstract—Periodic structures are used widely in integrated
optics for input—output couplers, bandstop filters, modulators, direc-
tional couplers, and distributed feedback lasers. An analytical dis-
cussion and review of these devices is given based upon the coupled-
mode transmission-line analysis. Experimental results and per-
formance characteristics are presented to illustrate the special fea-
tures of each type of device. Finally, the usefulness of transmission-
line analysis to the understanding and the design of these devices
is pointed out.

I. INTRODUCTION

NTEGRATED optics is an ambitious attempt to apply
thin-film and integrated electronics technology to optical

circuits and devices [1]-[8]. One of its goals is to achieve

sophisticated thin-film and fiber optical communication and
data processing systems. We may envision that such systems
will eventually be comparable to present microwave systems,
complete with thin-film sources, detectors, waveguides, filters,
directional couplers, modulators, etc. [7], [8]. Naturally,
there is a great deal of similarity between microwave and in-
tegrated optical components. However, because of the shorter
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optical wavelength, many microwave techniques utilizing the
matching of the transverse field variations for the fabrication
of devices such as E-H tuners, magic T’s, etc., are not ap-
plicable. Instead, techniques using periodic structures play a
dominant role in integrated optical device fabrication. There
are two major advantages in the use of periodic structures:
a) although the individual interactions from each element in
the periodic structure are small, their phase synchronized
cumulative effects can be very large; and b) small amounts
of random defects created in the fabrication process will not
affect the characteristics of the device significantly. Applica-
tions of periodic structures in integrated optics have already
led to the achievement of a number of devices such as the
input-output grating coupler [9]-[12], the bandstop filter
[13], distributed feedback lasers [14]-[16], modulators {17 ]-
[22], and directional couplers [23].

Despite the fact that both the properties and the fabrica-
tion techniques of different devices using periodic structures
vary a great deal, there is a considerable amount of similarity
in their analyses. It is informative to review the properties of
the various applications of periodic structures in integrated
optics, one by one, from a unified coupled-mode transmission-
line analysis point of view. Design data, experimentally
measured properties, and performance characteristics will
then be discussed to point out the special features of each
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device. In order to present the comments in depth within a
limited space, we shall limit our discussions here to one-di-
mensional periodic structures and shall exclude any discussion
of optical nonlinear interactions.

11. A PERTURBATION COUPLED-MODE ANALYSIS

Consider the various structures shown in Fig. 1. All these
structures have periodic variations of the dielectric constant
in some regions of physical space. Within these regions, the
periodic variation of the dielectric constant can be represented
by

Ae(x,z) = >, D,exp (—j2np cos ¢px/L

p=—

— j2xp sin ¢pz/L) (1)

where p is designated here as the order of diffraction of the
periodic structure. If either the amplitude of the periodic
variation is small or the region within which the periodic
structure exists (i.e., 6) is small, we can view the periodic
structure shown on the right of Fig. 1 as a perturbation of the
uniform thin-film waveguide shown on the left of Fig. 1.
The Maxwell’s equations for the entire structure with
d/0y=0 and with ¢! time variation can be reduced to the
following well-known inhomogeneous wave equation [24],

[25].
a) For TE Modes:
0? 9?
[t he) | B = B, Dt — 9
— ulx — t — 8)]-[u@@) — u(z — D]E,
where I, = E, = E,=0
j OE, J OB,

Ho=——" pg=2"" (2b)
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b) For TM Modes:

9 8
[ o) |, = o ) [t —

dx? 032
—u(x —t — 8)]- [u(z) — u(z — D]H, (3a)
where E,=H,=H,=0
j o, —7  9H
E=—T " g % (3b)
weee(x) 9z weee(x)  Ix

The term on the right-hand side of (2) and (3) is regarded
here as the perturbation term; 2=2w/X is the free-space
propagation wavenumber of plane waves; ¢(x) is the relative
dielectric constant shown in Fig. 1; « is the usual unit step
function; and [ is the total length of the periodic structure.
In principle, the properties of any device using a periodic
structure will be given by solutions of (2) and (3).

Solutions for the unperturbed structure (i.e., either §=0
or Ae=0) are well known [24]-[26]. They are the orthonormal
set of TE and TM air modes, substrate modes, and guided
wave modes. Using the notations given in [26] we shall desig-
nate any continuous mode (including both air and substrate
mode) as
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Fig. 1. Illustration of various periodic structures in integrated optics

(¢ is the angle of inclination of the grating fringes, ¢ =90° for gratings
with vertical fringes). (a) Etched grating. (b) Deposited grating.
(c) Volume grating in the evanescent field region. (d) Volume grating
in the guiding laver.

E, = E(x, B)e Frert
H, = H(x, B)e et

for TE modes
for TM modes.

(4a)
(4b)

The guided wave (i.e., discrete) modes shall be designated as

(52)
(Sh)

for TE modes
for TM modes.

E, = E,(x)e Pnzeivt
H, = H,(x)g Brrgivt

Both the air and the substrate modes are modes of the radia-
tion field.

If there is an incident wave in the form of one (or a combi-
nation) of these modes with a z variation ¢ %%, each indi-
vidual element of the periodic structure will scatter some of
its energy into other modes. In other words, the scattered
field, due to the perturbation of a single element, can be repre-
sented as a superposition of the continuous and discrete modes
of the unperturbed structure. If we superimpose (i.e., sum)
the contributions to a given mode from all the elements, we
see that the total amplitude for any mode will, in general, tend
to be very small because of the cancellations in phases of the
individual contributions. For a few special modes when their
phase variation, ™% (or ¢ /m?) is equal to ¢ v times
g~(mp sing 2/L) - the individual contributions will add (i.e., be
synchronized in phase). In these special cases, we recognize
that significant transfer of power between the incident and
the scattered mode can take place via the phase-synchronized
pth-order diffraction of the periodic structure. Mathemati-
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Illustrations of collinear phase matchings. (a) Grating output coupler. (b) Grating input coupler (forward excitation by air modes).

(¢) Grating input coupler (backward excitation by air modes). (d) Grating input coupler (backward excitation by substrate modes). (e) Forward

mode conversion. (f) Backward mode conversion.

cally, the condition for phase matching is usually written as
B = B0+ 27p sin ¢/L (6a)
Bn = Bo -+ 27p sin ¢/L (6b)

Obviously, there may be more than one mode that satisfies
the phase-matching condition. Fig. 2 illustrates different
situations in which colinearly propagating modes may be
phase matched for various kinds of grating periodicity.

In terms of (2) and (3), we see that the modes are solu-
tions of the unperturbed homogeneous wave equations with
Ae=0. When Ae=0 and when there is an incident wave (con-
sisting of one or more modes), all those modes that are not
phase matched by (6) to the incident mode (or modes) can be
neglected. The phase-matched modes are governed by the
inhomogeneous (2) and (3), where the source term is simply
Ae times the incident mode. It is well known in microwaves
that such an inhomogeneous equation can be considered sim-
ply as an inhomogeneous transmission line excited by a known
source distribution. There are various microwave techniques
for solving such an equation [27]-[29]. However, in optics it
is worthwhile to emphasize that there is a difference between
the transmission-line equivalent circuits for the discrete and
the continuous (i.e., radiation) modes. For continuous modes,
any scattered radiation field excited by the grating will be
outgoing waves and will not reinteract with the grating once
more to excite other modes. These solutions of the inhomo-

for continuous modes

for discrete modes.

geneous equations always behave like a simple matched
transmission line in the +x-directions excited by a known
source confined within a small region of x. Any discrete mode
is evanescent in the x-direction and will continuously be
coupled to other modes through the periodic structure as it
propagates along the sz-direction. It is best described as a
transmission line in the z-direction. When several modes are
phase matched to each other, then they may be represented
by transmission lines coupled to each other by the grating
perturbation. These differences in transmission-line solutions
are responsible for the different properties of the various de-
vices described in the following sections.

II1I. Tae GRATING INPUT-OUTPUT COUPLER

A plane wave incident on an unperturbed thin-film wave-
guide will usually be accompanied by a reflected and a trans-
mitted plane wave. A grating etched (or deposited) on the
waveguide shown in Fig. 1(a)-(c) will diffract any discrete
guided wave into outgoing radiation plane waves. This assort-
ment of incident, reflected, and transmitted plane waves at a
given angle of incidence 8 (or any single diffracted outgoing
plane wave at angle #) is either a substrate mode or a linear
combination of the degenerate even and odd air modes at the
same f value with 8=+/c(x) % sin 8 or B=+/e(x) % sin (w—0)
[26]. Each mode (or a combination of degenerate modes) can
be regarded as a transmission line.
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Consider now that there is a grating with an incident or
diffracted plane wave at angle 6. By and the grating period-
icity, L, satisfy the phase-matching condition

Bm = Bo+ 27 sin ¢/L (N

where By=F sin @ for plane waves in the air and Bg=n.k
sin (r--0g) for plane waves in the substrate. The grating will
convert part of the energy of the incident plane wave into the
mth guided wave. Or, conversely, the grating will convert the
energy of an incident mth guided wave mode into various dif-
fracted plane waves at 8y and at 69, In the former situation,
the grating acts as an input coupler. In the latter case it is an
output coupler. Naturally, there are other diffracted plane
waves at angles very close to each 8¢, They will be less intense
than the plane wave at §¢) because the phase-matching condi-
tion is only partially satisfied. Therefore, in reality, each dif-
fracted beam consists of a bundle of plane waves centered
around each 6. Similarly, the grating input coupler also will
. convert the energy of the incident plane wave into the mth
guided wave, even if ¢ is slightly different from 6y. The excita-
tion efficiency will naturally be reduced when 0:<6,. The
angular range of either the diffracted beam or the incident
excitation angle is called the beamwidth of either the diffrac-
tion or the excitation. Fig. 3 illustrates an input and an output
grating coupler, the incident beam at 6y, the output beam at
By, and the various higher orders of the diffracted beams
at 6™,

It is informative to examine first the grating output cou-
pler from the transmission-line point of view. Let V,, be the
complex amplitude of the mth incident guided wave mode

Diffracted beams in a grating coupler. (a) Grating input coupler (excitation from the air). (b) Grating output coupler.

propagating in the +sz-direction. The amplitude, V, of each
of the phase-matched diffracted plane waves centered at 69
(or at 7—0) is proportional to V,. Both the V’s and the
energy carried in each diffracted beam can be determined
directly from the transmission-line analysis. Since the energy
of the diffracted beams was extracted from the mth mode, V,,
must decrease as the mode propagates along the grating.
Thus we have [24]

Vo
a9z i
= — @nVm (8a)
where
Rt 1 1
rn = ———{z[— | i) |2 4+ — | €6 |2
16wue {75 Los pi

+;1; et l]p

Analytical expressions for C,, Cs, and C,’ for TE,, modes in an
etched coupler are given in (31) of [26]. Similar expressions
can also be obtained for TM modes and for other structures.
Each C, term represents the diffraction loss in the form of a
phase-matched outgoing radiation beam in the air with 8
values of the plane waves centered about 8¢9 where 8 =8,
— (2w sin ¢/L) and 0 <8 < k. Each C, term represents the
diffraction loss in the form of an outgoing radiation beam in
the substrate having the same value of 8 as the correspond-
ing C, term. Finally, each C,’ term represents diffraction loss



CHANG: PERIODIC STRUCTURES IN INTEGRATED OPTICS

with k<8 <k (i.e., in the form of substrate modes without
any companion radiation beam in the air).

From (8) it is clear that for a long enough grating (I >>1/a,)
all the energy of the incident guided wave will eventually be
diffracted out. Normally, only one of the outgoing beams at
is useful to us. Therefore, the maximum efficiency of an out-
put grating coupler for the beam at 6y in the air is

1 1 1
Nout = — ] Colz/ Z[— |Ca(i)[2+—— |C8<1)[2
(o) i [} P

1
+—|c/@) 12]. (92)
Pi

Similarly, the maximum efficiency of an output coupler for
the beam at @y in the substrate is

1 1 N AR
o = €4 / ;[;lcam 1)

1
+— | (C/G) |2]. (9b)
pi

Notice that 7,6 =<1 in all cases.

For an input grating coupler, the mth mode receives
energy from the incident plane wave as it loses energy to the
diffracted beams. Thus (8) must be modified to account for
the added energy: '

WV

= — @nVm -+ vA4,
az

(10)

where 4, is the amplitude of the electric field of the incident
plane wave at the phase-matched angle and » is the coupling
coefficient from the incident beam to the guided wave ob-
tained from the transmission-line analysis. Assuming that
either the grating grooves or the incident beam begins at
2=0 (i.e., V=0 at 2=0), we obtain from (10)

vA,

an

Vi = — [1 — e~one]. (11)

The power carried by the normalized guided wave mode at a
given z position is Vi, Va* while the power carried by the
incident plane wave over a distance z is [4,4,%/2]z cos
B0/ /1o/€n where n is the refractive index of the medium con-
taining the incident beam. Thus the efficiency of an input
coupler is

2(1 — e7ome)
Nin = 1 ————— (12a)
[o'7"4
with
n0 = ¥ /(am oS Bo\/n€0/ o) = Nout- (12b)

The maximum value of 9i, is 0.81%9 when z=1.25/an.

From the preceding discussion it is clear that the highest
maximum output coupling efficiency is 1 and the highest
maximum input coupling efficiency for a plane wave incident
on a linear grating is 0.81. In order to achieve this value we
must: a) use a long grating length, /, for the output coupler
(I>»1/a) and an appropriate length for the input coupler
(l=1.25/an), and b) effectively reduce the coupling into all
other unwanted beams (i.e, making |Co|>»>|C.(s)] and
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Fig. 4. A grating input coupler on a glass waveguide (taken from [9]).
The incident beam (Iy), transmitted beam (7), reflected beam (R),
first-order diffracted beam in the air side (Dy), first-order diffracted
beam in the substrate side (Dy’), and guided optical beam are shown.

| Cs()] and | C'(i)] for i5%0). The absolute magnitude of the
coupling (e.g., the grating depth) controls only the length
of the coupler needed for efficient operation; it does not affect
the maximum efficiency.

If we define the beamwidth as the angular range, A#,
around 6y or ¥ within which the V of the diffracted plane
waves will be larger than 1/+/2 of the V value at 6, or 89,
then from the solutions of ¥ [26] we obtain

sin (cos 8P kIA8/2 sin ¢)

: - =—= (13a)
(cos 6D kIAG/2 sin ¢) V2
for diffracted beam (or excitation) from the air, and
) sin (cos 8D n.klAB/2 sin 1
( kA2 sin0) 1 (13b)

(cos 0DnsklA0/2 sin ¢) V2

for diffracted beam (or excitation) from the substrate. Note
that long and shallow grating couplers yield narrow beam-
width.

Experimentally, Dakss ef al. have demonstrated a de-
posited grating coupler shown in Fig. 4 for a glass waveguide
at an efficiency of 40 percent [9]. Kogelnik and Sosnowsky
have used a dichromatic gelatin holographic grating coupler
and achieved an efficiency of 70 percent [10]. Dalgoutte ob-
tained 70-percent efficiency using a backwardly excited de-
posited grating coupler [11]. Cheo used an etched grating on a
GaAs waveguide and obtained 10-percent efficiency at the
CO; laser wavelength [30]. Note the large variations in effi-
ciency values (i.e., variations in 1¢). These variations can be
accounted for by the differences in the C coefficients in each
case. Hence, analytical guidance [26], [31]-[33] is important
in order to achieve efficient grating coupling in a given wave-
guide. It is also interesting to point out that, experimentally,
a grating coupler can be evaluated most simply by using it as
an output coupler, thereby determining its 7.

There are several mechanisms available to us to make
o ==1.

a) The modes of the laser (for input coupling only), the
polarization of the incident wave, the grating groove shape,
and the order of the grating [i.e., the D, value in (1)] should
be chosen so that | Cy| is fairly large.

b) 7mois one if the grating periodicity is chosen as shown in
Fig. 2(d) and in [11] such that phase matching is achieved
only for one substrate mode at the |p| =1 order (i.e., only
one (' term exists).

c) If the refractive index of the film is high, then the
term is likely to be larger than the corresponding C, term at
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Ilustrations of grating mode converters and deflectors. (a) Forward mode converter. (b) Backward mode converter.

(¢) Reflector. (d) Bragg’s deflector.

the same 3P, Hence, fairly large 5y value can be obtained with
8 values in the zero to % range [see Fig. 2(c)| using the | p| =1
order and using air modes from the substrate side [26].

d) Other techniques may be used, such as using a holo-
graphic grating or using sinusoidal shaped grating grooves, to
make the C coefficients very small at those unwanted orders
of |p| >1. However, the holographic grating could also sup-
press the unwanted diffraction in either the substrate or the
air side. The sinusoidal grating grooves will still have both the
C, and the C; terms at the same value of Bo.!

IV. PEriobic MopE CONVERTERS AND DEFLECTORS

Gratings can also be used to synchronously couple two
propagating discrete modes. Consider the etched (or de-
posited) grating shown in Fig. 1(a). Let K be a vector per-
pendicular to the grating grooves with a magnitude 2w/L.
B~ and (B, are vectors representing the propagation wave-
numbers along the directions of propagation of the mth and
the nth mode. When the phase-matching condition +K=3§,
— 8. is satisfied, the grating will convert the energy effectively
from the mth mode to the nth mode and vice versa. Thus the
grating is now a mode converter. If §,, and §, are parallel to
each other as shown in Fig. 5(a), it is a forward mode con-
verter. If 3, and 3, are antiparalleled to each other as shown
in Fig. 5(b), it is a backward mode converter. When z=min a
backward mode converter as shown in Fig. 5(c), it is a reflec-

! Recently, Tamir has shown that for grating groove depth =2\,|4,
70==1, where A, is the equivalent wavelength in the grating region and the
excitation is a plane wave from the air region. These deep gratings cannot
be analyzed by the perturbation methods.

tor. When §3,, and (8, are along different directions as shown in
Fig. 5(d), it is a Bragg’s deflector. Mode converters can also
be used as directional couplers because the direction of propa-
gation of two modes can easily be made to be different in thin
films.

From the transmission-line point of view, the two trans-
mission lines representing the nth and the mth mode are now
coupled to each other via the first-order diffraction of the
grating. Simultaneously, each of these two modes are also
coupled to the continuous modes via higher order diffractions.
We can estimate the diffraction losses to their radiation modes
from (8). Compared to the grating input—output couplers,
the diffraction losses now are much smaller and may not
necessarily be the major contributor to the attenuation for
the waveguide modes.

Let us designate the total attenuation rate, due to both
diffraction and ordinary waveguide attenuation, as &, and a,.
Then from the transmission-line formalism [23] the relation
between the amplitudes of the mth and nth mode, V,, and
V. is given by

Vo
= - ame +ijnVn (143')

3

av,
5 F anVu £ i KunVm. (14b)

4

Here the mth mode is assumed to be propagating in the +2z-
direction. The nth mode is propagating at a small angle ¢ with
respect to the z axis. The upper sign in (14b) applies to
forward deflection (or forward mode conversion) and the
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lower sign applies to backward deflection (or backward mode
conversion). For structures with D; = D_; and for conversions
and deflections with small angles of deflections ¥, the coupling
coefficient K, is

E*Dicosy ¢
dwp 5

For illustration, let us first consider the case of backward
deflection and mode conversion where am =0, =a; the grating
lengthis /; and V,=0atz=7!and V,,=1at z=0. In this case,
the solution of (14) is:

Y cosh y(l — 2z) + asinhv({l — )

m : (16a)
v cosh ¥/ + «a sinh v/
— Ky sinh v(I — 2
n = ? (. )’ 0<z<1 (16b)
v cosh ¥/ + a sinh v/
: =0
n = efficiency of conversion =
| V(s = 0|2
Kmn2
(16¢)

B (y coth v + a)?
where
Y = '\/am2 + Kmn—2

In the case of forward deflection and mode conversion, with
am=a, and 7, =0 at =0, we obtain

Vo
Va

el cos (Kmnl) (17a)

(17b)

2

— jemoml sin (Knl)
Vaulz =10)
Va(z =1)

n = efficiency of conversion

= tan® (Kul).

Equations (16) and (17) predict that a controlled amount
of energy can be deflected or converted out of the incident
mode by controlling the depth of grating grooves and the
length of interaction. Fig. 6 shows an experimentally fabri-
cated grating forward mode converter at A=10.6 um in a
GaAs epitaxial waveguide [23]. Fig. 7 shows its calculated
conversion efficiency compared to the experimental results.
Note that in order to achieve high efficiency one must mini-

Illustration of forward mode converter,

mize a, and a,. The radiation loss may contribute signifi-
cantly to ay, and a, if we are not careful in designing the
grating. For example, Fig. 8 shows the rapid increase of radia-
tion loss for two particular GaAs waveguides when the
grating grooves are deepened. The radiation loss in grating
mode converters can be minimized by using shallow grating
grooves, by using groove profiles to minimize D, values for
$>1, and by designing the waveguide so that radiation modes
are coupled to the discrete modes only at fairly high orders of
diffraction.

V. MobuLaTors UsING PERIODIC STRUCTURES

Etched gratings achieved periodic changes in refractive
index through their surface profile. One could also achieve
periodic changes in refractive index by the electrooptical
effect using a modulation voltage applied to a periodic elec-
trode pattern or by the acoustooptical effect using acoustic
waves at appropriate frequencies [17]-[21]. Since the
changes of refractive index can now be controlled by either
the applied modulation voltage or the amplitude of the
acoustic waves, this type of deflector or mode converter can
serve as an amplitude modulator or a switch. Experimental
demonstration of the electrooptical Bragg’s modulation and
deflection was reported by Gia Russo and Harris [18] and by
Polky and Harris [17] at A =0.6328 um. In one case they used
the electrooptical material nitrobenzene as the waveguide ma-
terial and obtained amplitude modulation of 3 percent at 120
KHz using a 1-cm-long electrode with 30 V applied across the
waveguide. In the second case, they used an interdigital
periodic pattern electrode on a nitrobenzene filled waveguide
and obtained 50-percent amplitude modulation at 8 KHz
with a 5-mm-long electrode when 200 V was applied across
the interdigital electrodes. Fig. 9 shows the modulator made
by Polky and Harris. Experimental demonstration of acoustic
mode conversion and Bragg’s deflection at A=0.6328 um was
reported by Kuhn et al. in glass waveguides at 191- and
320-MHz acoustic frequency at a modulation efficiency of 66
and 45 percent, respectively [19], [20]. Fig. 10 shows the
acoustooptical deflector made by Kuhn et al. Gfeller and
Pitt reported collinear acoustooptical deflection in a poly-
styrene waveguide on a glass substrate [21]. Experimental
demonstration of acoustic deflection and mode conversion at
A=10.6 um in GaAs epitaxial waveguide was also reported by
Cheo [34]. Switching and modulation of light using periodic
magnetooptical effects in garnet waveguide were accom-
plished by Tien ef al. [22].

From the transmission-line point of view, the coupled-
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mode equation for the modulator is similar to those of the
etched grating mode converter and deflector. Therefore, the
solutions for modulation efficiency are the same as those
given in (16) and (17) except that for electrooptical modula-
tors

t
ad f EnE, dx
2wp s o

where the modulation voltage V is applied across the wave-
guiding film of thickness £, # and r are the refractive index and
the electrooptical coefficient of the waveguiding film, respec-
tively. V is now a function of time.

In practice one would expect the K,,, coefficients for elec-
trooptical modulators to be smaller than the Ky, coefficients
for deep etched grating grooves because 7 is typically of the
order of 10712 m/V. An advantage of small K, is that the
contribution to the attenuation coefficient, @, by radiation
loss can usually be neglected. A disadvantage of small K.,
is that we need rather large values of Ku, to achieve efficient
modulation constrained by: a) the required modulation drive
power, and b) the available interaction length. This disad-
vantage is especially troublesome at long wavelengths such
as 10.6 um [35]. Thus from the point of view of the required
RF power and voltage for a given depth and bandwidth of

_ Rty | 14 |
B 278t

Ko cos ¢ (18)

modulation, mode conversion will be an inefficient modula-
tion (or switching) technique because of the small values
achievable for f§ EnE, dx. Bragg's deflection or reflection
from the mth mode to a backward propagating mth mode is
preferred. For a given modulator, (16), (17), and (18) allow
us to optimize the modulator design so that we can get maxi-
mum deflection efficiency with minimum modulation drive
power. For example, we may want to choose the thickness of
the waveguide so that we can get the largest depth of ampli-
tude modulation at a given applied voltage.

Similar conclusions can be drawn for acoustooptical mod-
ulators and switches. However, the acoustic waves will pro-
duce periodic Az due to both variations of the density in the
film and of the surface profile. The analysis will be more com-
plicated. In general, electrooptical modulators will give the
largest modulation bandwidth. Acoustooptical modulators
can be operated with small RF power. However, their band-
width is limited by the transit time of acoustic waves. Mag-
netooptical modulators are convenient to use but have moder-
ate bandwidths.

VI. PeEriopic BANDPASS FILTERS

When the frequency of the optical radiation is such that
the phase-matching condition is satisfied for backward wave
interactions, (16) predicts that all the energy in the mth mode
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will be reflected back for large . In terms of the terminology
used in traveling wave tubes, we say that this waveguide with
an etched grating is now a periodic structure operated in its
“stopband.” When the frequency of the optical radiation does
not satisfy the condition for backward interaction, the at-
tenuation of the mth mode will be small. Therefore, periodic
gratings can be used as bandpass filters. The analysis and the
design of the bandpass filter are concerned with the width of
the stopband, the insertion loss in the passband, and the mag-
nitude of isolation in the stopband.

From the transmission-line point of view when two modes
in opposite directions of propagation (most commonly a back-
ward and a forward propagating TEy mode) do not satisfy the
phase-matching condition exactly, they are coupled to each
other through equations similar to (14) and (15):

WV
= — auVm + KmnaV,e?46% (19a)
dz
V.
3 = anVn — JKunVme 9462 (19b)
%
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and

AB:—Z -—-,B,n—‘ﬁl (19)
ol C
L

Here the mth mode is propagating in the --z-direction, and
the nth mode is propagating in the —z-direction. am, o, and
K can be calculated according to (9), (15), and (18) and Sec-
tion IV. The frequency is allowed to vary. The exact phase-
matching condition corresponds to AB=0. In other words, AB
is a measure of the deviation from the exact phase-matching
condition. Without imposing the boundary conditions in 2 at
this moment, we note that solutions of (19) must again be of
the general form

Vo
Vn

where for simplicity we have assumed e, =@, =a. Substitution
of (20) into (19) yields:

i

(Cre0% + Caetro?)ei82/2

(D107 4 Dyetro?)eia=12

(20a)
(20b)

il

ABN?
vo? = Kui? + <Ol +]—2—> . (21)
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Equation (21) is the well-known dispersion relation of
traveling wave structures. Kogelnik and Shank presented
this result for the special case of m=7 in the coupled-wave
analysis of distributed feedback lasers [36]. For an ideal
waveguide with @=0, (21) indicates that v, is real (in other
words the structure is in the stopband) whenever |AB]
<2|Kuma|. Consequently, the stopband has a half-width of
2K . When [AB] > | 2K n| (@=0), 7o is purely imaginary and
the structure is in the passband. Fig. 11 shows the diagram of
the imaginary part of yo/| Kmn| versus AB/| 2K, | when a=0.

For a given structure we can use (21) to calculate the vari-
ations of the real part of v as AB is varied from the center to
the edge of stopband, thereby evaluating the isolation ob-
tainable within the stopband for a given length of the fAlter I.
Similarly, in the passband, the real part of v, determines the
insertion loss of the filter for a given length /.

In the special case where n=m, the coupled-mode trans-
mission-line analysis is, of course, just the perturbation anal-
ysis of the interaction of two space harmonics in the stopband.
Elachi and Yeh presented extensive analysis of such a periodic
structure from the space-harmonic point of view [37]. A de-
tailed discussion of the properties of periodic structures in the
stopband was given in their work. Dabby, Kestenbaum, and
Paek presented a formalism that included more than two
space harmonics [13]. The analysis presented here agrees with
these results in the region where the grating can be treated as
a perturbation. However, our method is also valid when the
filtering is provided by two different modes (i.e., m><#n).

Dabby, Saifi, and Kestenbaum have actually constructed
such a filter [38]. The guides consisted of photoresist film with
surface corrugation on fused silica substrate at a periodicity of
0.36 um and at a depth of 500 A. At A=1.064 um they ob-
tained transition between complete cutoff and propagation by
variation in the periodicity of the guide by +30 A.

VII. DisTRIBUTED FEEDBACK RESONATORS AND LASERS

Bandpass filters used the phase-matched interactions
created by the periodic structure to reflect the incident mode.
Such reflections naturally will occur in both directions. If the
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reflections that occur have the proper phase relationship so
that they provide positive feedback, we will have then a dis-
tributed feedback resonator. If the waveguide has gain (e.g.,
a material impregnated with an appropriate dye) such that
the gain exceeds the losses, we will have a distributed feed-
back laser.

A number of researchers have reported experimental dem-
onstration of distributed feedback lasers. Shank, Bjorkholm,
and Kogelnik obtained dye laser oscillation in which the feed-
back is achieved by pumping the dye with the fringes formed
by the interference of two second-harmonic beams of a single-
mode ruby laser [14]. Zory showed that laser oscillation can
be obtained on the guided modes of leaky planar film wave-
guides by using a dye to provide the gain and backward dif-
fraction from a spatially periodic modulation of the film
thickness to provide the feedback [15]. Nakamura et al. re-
ported laser oscillation in a GaAs thin-film waveguide pumped
by a ruby laser; the grating was obtained by ion milling of
photoresist patterns generated from the interference of two
laser beams [16].

Kogelnik and Shank [36] gave an analysis of the dis-
tributed feedback laser, which is equivalent to the solution
given in (20), subject to the boundary condition that V,,(z=0)
=V,(z=0)=0;i.e,

Vo
Va

(sinh y,z)eiB=/2

[sinh yo(I — z)]e—282r2,

(22a)
(22b)

When there is enough gain and enough feedback to sustain
oscillation, solutions given in (22) must also be the self-sus-
taining solutions of (19). Substitution of these two solutions
into (19) yields the condition for the threshold of laser oscil-
lation,

AB
—a —]7 = vy coth yyl. (23)

Note that for a waveguide with gain, a is now a negative quan-
tity. Each solution of (21) and (23) is an eigenvalue solution
of (19). Substitution of these eigenvalues of vy into (22) yields
an eigenmode for the resonator. The a values needed to satisfy
(21) and (23) simultaneously are the threshold gain. For a
given length / and a given coupling coefficient K., each eigen-
mode has its characteristic field pattern, its threshold gain,
and its characteristic resonance frequency. For example,
Fig. 12 illustrates the oscillation frequencies and the threshold
gain for a typical distributed feedback laser.

Much of the detailed properties of the solution of (23) are
given in [36] and [37], and they will not be repeated here.
We simply wish to point out here that, whenever there is only
one discrete mode involved, the difference between the results
given in [36] and the results obtained here is that we have
given a method to evaluate K, for both etched periodic struc-
tures or periodic structures created by electrooptical or
acoustooptical interactions. The coupling coefficient given by
Kogelnik and Shank is accurate only for thick films. For thin-
film waveguides their values of coupling coefficient will be too
large because they assumed Ae¢ occurred in the entire environ-
ment including the waveguiding layers and all the evanescent
field regions. Other researchers, using the space-harmonics
method, have also obtained analyses of distributed feedback
lasers including effects of surface corrugations, acoustooptical
effects, etc. [37], [39]. Our method also allows us to evaluate
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required threshold gains for a distributed feedback [36].

the & caused by radiation loss. Moreover, for waveguides that
can support more than one discrete mode, the oscillation mode
pattern, the threshold condition, etc., will be given by solu-
tions of (23), including all the possible combinations of dis-
crete modes in backward diffraction. Recently, Bjorkholm,
Sosnowski, Shank, and Kogelnik have reported distributed
feedback lasers on anisotropic substrates [40], [41].

VIII. SumMmARY

In retrospect, we see that the coupled-mode theory and
transmission-line analysis developed originally for microwave
circuits is very useful to integrated optics. The important
parameters for the design and understanding of periodic struc-
tures in integrated optics are the attenuation rate @, the cou-
pling factor », and the coupling coefficient K. Kmn is deter-
mined by the overlap integral fE,E, dx. By using the trans-
mission-line analysis we could adjust the design of the struc-
ture both to optimize the coupling to a given radiation beam
(or a given waveguide mode) and to minimize the other un-
wanted couplings. As a result, we could control the coupling
efficiency, the conversion efficiency, the width of the stopband,
etc. By the same kind of analysis, we could also assess laser
resonant frequency, oscillation threshold, oscillation mode
patterns in terms of the structure parameters such as wave-
guide thickness, refractive index, grating periodicity, grating
depth, cavity length, etc. Obviously, limitations in space pre-
vented us from giving a more detailed discussion of the char-
acteristics and design procedures for each device. The readers
are referred to the references listed at the end of this paper for
detailed information.
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